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Assignment 8 – June 23

Exercise 17: Heat kernels on curved backgrounds

Motivation: Last week, we encountered the trace of a differential operator. In curved backgrounds, such a trace is
best calculated with so-called heat-kernel techniques. Here we get to know the heat kernels for a real scalar field.

This exercise is similar to last week’s. However, Wick rotation in curved backgrounds is difficult (if
not impossible). Therefore, we will stay Euclidean throughout this time. The partition function
for a massive scalar on a curved Euclidean background reads

Z =

Z
D�e�S� , (17.1)

with the action
S� =

1

2

Z
d4x

p
g
⇥
gµ⌫rµ�r⌫�+m2�2

⇤
. (17.2)

The Euclidean effective action �[g] is defined such that

e�� =

Z
Dge�SEHZ, (17.3)

with the Euclidean Einstein-Hilbert action

SEH =
1

16⇡G

Z
d4x

p
g (�R + 2⇤) . (17.4)

(a) As a throwback to last week’s exercise, show that for constant metric the scalar contributes
to the gravitational effective action as

�(1)[g] =
1

2
tr log(��+m2) + const. (17.5)

The constant part has to be renormalized and contributes to the cosmological constant, but we
will ignore those contributions here. Again, we use the proper-time representation aka the Laplace
transform of the logarithm, c. f. Eq. (16.8) yielding

�(1)[g] = �1

2

Z
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0

ds

s
e�sm

2tr
⇥
es�

⇤
. (17.6)

We will now compute the trace with heat kernels. The heat kernel KM of an operator M satisfies
the differential equation

d

ds
KM = �MKM , (17.7)

with the initial condition KM(0) = 1. The trace of the heat kernel is the trace we want to compute.
In position space, where x = (x0, x1, x2, x3), we can define K(x,x0, s) = hx|KM |x0i, and represent
Eq. (17.7) as

d

ds
K(x,x0, s) = �MK(x,x0, s), (17.8)

with the initial condition K(x,x0, 0) = �(4)(x� x0).



(b) Demonstrate that if we choose M = ��, i. e. if

d

ds
K(x,x0, s) = �xK(x,x0, s), (17.9)

we can write
tres� =

Z
d4xK(x,x, s). (17.10)

Here, �x acts on the label x only. From here on, we don’t use the subscript x on differential
operators any more. All derivatives act on x unless otherwise stated.

(c) Let’s start in flat space. Show that in a flat Euclidean background, Eq. (17.9) has the
solution

K(x,x0, s) =
1

(4⇡s)2
exp


�(x� x0)2

4s

�
. (17.11)

Hint: In flat space, one can use Fourier methods.

The heat kernel is a function of the distance only. This makes sense because the result should
be a scalar. Similarly, in curved space, the result can only depend on scalars constructed from
(derivatives of) the squared geodesic distance and the curvature tensor. We work with the world
function �(x, x0) which equals one half of the squared geodesic distance and satisfies the differential
equation

1

2
rµ�(x,x

0)rµ�(x,x0) = �(x,x0). (17.12)

We know that we can use normal coordinates in a finite neighbourhood of a point. Riemann
normal coordinates, for example, yield a flat metric at that point plus corrections. Here, we do
something similar. We make an ansatz

K(x,x0, s) =
1

(4⇡s)2
e�

�(x,x0)
2s

1X

n=0

An(x,x
0)sn, (17.13)

where the coefficients An(x,x0) encapsulate the deviation from flat space.

(d) What does the boundary condition translate to in terms of the coefficients An(x,x0)?

Using Eq. (17.12), one can show that the coefficients satisfy the recursive differential equation

n� 2 +

��(x,x0)

2

�
An(x,x

0) +rµ�(x,x0)rµAn(x,x
0)��An�1(x,x

0) = 0, (17.14)

where An = 0 for n < 0.
In the end, we are not interested in K(x,x0, s) because the trace of the heat kernel

trKM =

Z
d4x

p
gK(x,x, s) (17.15)

contains only the diagonal elements of K(x,x0, s). Therefore, we do not need the coefficients
An(x,x0), but only their coincidence limits

an(x) = lim
x0!x

An(x,x
0). (17.16)

Let’s compute a1(x).



(e) Demonstrate that a1 satisfies a differential equation whose solution requires the knowledge
of limx0!x �A0.

Hint: Note that coincident limits and covariant derivatives do not commute. From here
on, you can use without proof (or prove if you want) that Eq. (17.12) together with
limx0!x �(x, x0) = 0 implies

lim
x0!x

rµ1
rµ2

. . .rµn
�(x, x0) =0 for odd n, (17.17)

lim
x0!x

rµr⌫�(x, x
0) =gµ⌫ , (17.18)

lim
x0!x

rµr⌫r⇢r��(x, x
0) =� 1

3
(R⇢µ�⌫ +R⇢⌫�µ) . (17.19)

(f) By acting with � on the differential equation for A0 and taking the coincident limit, show
that

lim
x0!x

�A0 =
R

6
. (17.20)

Show that as a result
a1 =

R

6
. (17.21)

(g) Going back to Eq. (17.6) show that the terms containing a0 and a1 are divergent. They
contribute to the renormalization of constants of the background theory. Which are those?

At higher order in s, one obtainsa

a2 =
R2

120
+

Rµ⌫Rµ⌫

60
. (17.22)

(h) Verify that the resulting contribution to the renormalized effective action reads

�(1)

ren
[g] =

�E + 2 logm

120(4⇡)2

Z
d4x

p
g

✓
R2

2
+Rµ⌫R

µ⌫

◆
, (17.23)

with the Euler-Mascheroni constant �E. Indeed, we obtain higher-order corrections to general
relativity from integrating out matter particles. What happens in the limit m ! 0?

Hint: Use a proper time cut-off, i. e. integrate over s from ✏ to infinity, and isolate the part
which is finite in the limit ✏ ! 0.

aThe expression omits the Rµ⌫⇢�Rµ⌫⇢� term by using the Gauss-Bonnet identity.

(a) We can rewrite the action as

S� =
1

2

Z
d4x

p
g�

⇥
��+m2

⇤
�. (17.24)

The resulting path integral is Gaussian, and can be evaluated immediately yielding

�(1) =� logN � log
⇥
det

�
��+m2

�⇤� 1

2 , (17.25)

=
1

2
log det

�
��+m2

�
+ const. (17.26)

(b) The differential equation defining the heat kernel, namely Eq. (17.7), together with the initial



condition K(0) = 1 is solved by the operator

KM = e�sM . (17.27)

The trace of a differential operator without further degrees of freedom (like e. g. spin) can be taken in
position space, i. e.

tres� =

Z
d4xhx|es�|xi, (17.28)

=

Z
d4xhx|K��|xi. (17.29)

(c) The initial condition is satisfied by definition of the delta function. In Fourier space, we can
write Eq. (17.9) as

d

ds
K̃(k,x0, s) = �k2K̃(k,x0, s). (17.30)

This equation is solved by
K̃(k,x0, s) = f(x0,k)e�k

2
s, (17.31)

for any regular function f. The function f is determined by the initial condition, namely K(k,x0, 0) =
e�ikx0

. Going back to position space, we obtain

K(x,x0, s) =

Z
d4k

(2⇡)4
e�k2

s+ik(x�x0
) =

1

(4⇡s)2
e�

(x�x0)2
4s . (17.32)

(d) One definition of the delta function in four-dimensional flat space is

�(x) = lim
✏!0

e�
x2

2✏

(2⇡✏)2
. (17.33)

If we choose ✏ = 2s, we exactly obtain the limit

K(x,x0, 0) = lim
✏!0

1

(2⇡✏)2
e�

�

2✏a0. (17.34)

This is a four-dimensional �-function with the Euclidean distance function replaced by the general
Riemannian one. However, the result is only non-vanishing if the Riemannian distance vanishes, which
is a limit in which the Riemannian nature is irrelevant (locally Riemannian geometry is Euclidean).
Thus, we obtain

K(x,x0, 0) = �(4)(x� x0)a0. (17.35)

The initial condition is satisfied if a0 = 1.
(e) For n = 1 Eq. (17.14) reads


��(x,x0)

2
� 2

�
A1(x,x

0) +rµ�(x,x0)rµA1(x,x
0)��A0(x,x

0) = 0. (17.36)

In the coincident limit, we obtain

lim
x0!x

��(x,x0)

2
� 1

�
a1(x) + lim

x0!x
rµ�(x,x0)rµA1(x,x

0)� lim
x0!x

�A0(x,x
0) = 0. (17.37)

Applying the hint, we can write this as

a1(x) = lim
x0!x

�A0(x,x
0). (17.38)



(f) Acting with � on Eq. (17.14) for n = 0, we obtain

0 =
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2
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�
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�2�(x,x0)
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(17.39)

where the "odd terms" are terms with an odd number of derivatives of the world function, which vanish
in the limit x0 ! x. In the coincidence limit, we therefore obtain

lim
x0!x

�A0(x,x
0) =

1

12
gµ⌫g⇢�(R⇢µ�⌫ +R⇢⌫�µ) =

R

6
. (17.40)

Then, by Eq. (17.38), we obtain

a1 =
R

6
. (17.41)

(g) By Eq. (17.6), the first corrections to the effective action read

�(1)[g] = �1

2

Z
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Both terms appearing here are divergent in the limit s ! 0. The first term is quadratically divergent
in s, i. e. quartically divergent in momenta. This is just a constant, thus contributing to the renor-
malization of the cosmological constant. The second term is linearly divergent in s, so quadratically
divergent in momenta. This term is proportional to the Einstein-Hilbert action, thus contributing to
the renormalization of the gravitational constant.

(h) The additional terms lead to the contribution
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To renormalize the integral, we integrate from ✏ to infinity as indicated in the hint such that

�(1)
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where �(x, a) is the incomplete Gamma function. Thus, the renormalized effective action reads

�(1)

ren
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◆
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In the limit m ! 0, we find an IR divergence. This is usual when integrating out massless particles.



Exercise 18: Palatini gravity

Motivation: Contrary to what you learn in your general-relativity class, general relativity does not have to be a
theory of a metric with compatible connection. On shell one can define an equivalent theory in terms of the vielbein,
and the connection need not be assumed compatible either. Let’s see how, and on the way learn how to juggle with
the spin connection!

Given some metric gµ⌫ , we can define the tetrad ea
µ

in the usual way, namely as

gµ⌫ = ⌘abe
a

µ
eb
⌫
. (18.1)

The tetrad implements a local symmetry, namely local Lorentz invariance. The Lorentz transfor-
mations act on the Latin indices. To comply with the local symmetry, we have to introduce a
covariant derivative on objects carrying local Lorentz indices, say

DµVa = @µVa � !̃ b

µa
Vb, DµV

a = @µV
a + !̃ a

µ b
V b, (18.2)

with the spin-connection coefficients !̃ b

µa
. This covariant derivative may also be nontrivial when

acting on spacetime vectors
DµV

⌫ = @µV
⌫ + �̃⌫

µ⇢
V ⇢, (18.3)

with some spacetime connection �̃⇢

µ⌫
.

(a) Implement local Lorentz invariance by imposing that

Dµ⌘ab = 0. (18.4)

Show that this implies that !µ(ab) = 0. Make sure you understand why Eq. (18.4) implies
local Lorentz invariance.

(b) While Eq. (18.4) looks a bit like a metric-compatibility condition, it is not. Show that
metric compatibility can only be derived from local Lorentz invariance if we enforce tetrad
compatibility

Dµe
a

⌫
= 0. (18.5)

We do not want to impose any relation between the connection and the vielbein/metric from the
start here, so we do not enforce tetrad compatibility from now on.
We define the curvature of the connection ⌦ b

µ⌫a
as usual for gauge theories with the slight addition

that there can be torsion T ⇢

µ⌫
, i. e.

[Dµ, D⌫ ]V
a = ⌦ a

µ⌫ b
V b � T ⇢

µ⌫
@⇢V

a. (18.6)

(c) Show that

⌦ ab

µ⌫
=2@[µ!̃

ab

⌫]
+ 2!̃ ac

[µ
!̃ b

⌫]c
� T ⇢

µ⌫
!̃ ab

⇢
, (18.7)

T ⇢

µ⌫
=2�̃⇢

[µ⌫]
. (18.8)

Let us from now on set the torsion equal to 0, i. e. assume a torsion-free connection. Given the
curvature, we can construct the imitation Riemann tensor

R̃ ⇢�

µ⌫
= e⇢

a
e�
b
⌦ ab

µ⌫
, (18.9)



the imitation Ricci tensor
R̃ ⇢

µ
⌘ R̃ ⇢⌫

µ⌫
= e⇢

a
e⌫
b
⌦ ab

µ⌫
, (18.10)

and the imitation Ricci scalar
R̃ ⌘ R̃ ⌫

⌫
= eµ

a
e⌫
b
⌦ ab

µ⌫
. (18.11)

These tensors are analogues of the tensors known from Einstein-Hilbert general relativity, but are
not a priori related to them because the connection is not yet fixed.
With the imitation Ricci scalar, we construct the Palatini action

SP =
1

16⇡G

Z
d4xeeµ

a
e⌫
b
⌦ ab

µ⌫
, (18.12)

where e = det ea
µ
. In the following, we show that this action is on-shell equivalent to general

relativity under mild assumptions on the connection. The idea is to vary with respect to both the
vielbein and the connection.

(d) Vary the action with respect to the vielbein to obtain the equation of motion

R̃µ⌫ �
1

2
gµ⌫R̃ = 0. (18.13)

This looks very much like general relativity already. However, R̃µ⌫ 6= Rµ⌫ in general.

(e) Vary the action with respect to the connection to obtain the constraint

Dµ

⇣
eeµ

[a
e⌫
b]

⌘
= 0. (18.14)

Hint: Note that while !̃ ab

µ
is not a tensor, �!̃ ab

µ
is a tensor, so it makes sense to take its

covariant derivative.

(f) Show that Eq. (18.14) implies that the nonmetricity

Q⇢µ⌫ = D⇢gµ⌫ (18.15)

is constrained to be totally symmetric, i. e. such that Q⇢µ⌫ = Q(⇢µ⌫). Thus, consistency
requires the connection to be very close to being the Levi-Civita connection for which Q⇢µ⌫ =
0.
Hint: You can use without proof that

e eµ
[a
e⌫
b]
=

1

2
✏µ⌫⇢�✏abcde

c

⇢
ed
�
. (18.16)

(g) If we assume that the connection is the Levi-Civita connection, the theory is equivalent to
general relativity at the classical level. Discuss whether it is also equivalent at the quantum
level.

(a) The covariant derivative of the Minkowski metric reads

Dµ⌘ab =@µ⌘ab � ! c

µa
⌘cb � ! c

µb
⌘ac, (18.17)

=� !µ(ab). (18.18)



Its vanishing thus requires the spin connection to be antisymmetric. That the covariant derivative of the
local Minkowski metric vanishes implies that the Minkowski inner product, necessary for local Lorentz
invariance, is preserved under parallel transport. Indeed, parallel transport for a vector V a requires
DµV a = 0, so

Dµ(VaW
a) = V aW bDµ⌘ab = 0 (18.19)

iff Dµ⌘ab = 0.
(b) Metric compatibility implies

D⇢gµ⌫ = D⇢(⌘abe
a

µ
eb
⌫
) = (D⇢⌘ab)e

a

µ
eb
⌫
+ ⌘abD⇢(e

a

µ
eb
⌫
) = 0. (18.20)

If we assume local Lorentz invariance, we obtain

D⇢(e
a

µ
eb
⌫
) = 0, (18.21)

which implies D⇢eaµ = 0.
(c) From the commutator of covariant derivatives, we obtain

[Dµ, D⌫ ]V
a =2D[µ

�
@⌫]V

a + !̃ a

⌫] b
V b

�
, (18.22)
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a. (18.23)

Thus, we obtain the curvature and torsion tensors
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, (18.24)

T ⇢

µ⌫
=2�̃⇢

[µ⌫]
. (18.25)

(d) We have to vary the determinant of the vielbein with respect to the vielbein. Let us use

�e =� (det eµ
a
)�1 = � (det eµ

a
)�2 � exp(tr log eµ

a
) = � (det eµ

a
)�2 etr log eaµ�tr log eµ

a
, (18.26)
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a
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The rest of the variation is just an application of the product rule such that

�SP

�eµa
= e

h
e⌫
b
(⌦ ab

µ⌫
+ ⌦ ba

⌫µ
)� ea

µ
R̃
i
= 0. (18.28)

Local Lorentz invariance implies that the connection is antisymmetric in its Lorentz indices, which, in
turn, implies that the curvature tensor is antisymmetric in both the Lorentz and the spacetime indices.
Thus, it is symmetric in changing both of them at the same time such that we obtain

e⌫
b
⌦ ab

µ⌫
� 1

2
ea
µ
R̃ = 0. (18.29)

Contracting with eµ
a
, we obtain

R̃µ⌫ �
1

2
gµ⌫R̃ = 0. (18.30)

While one might get the impression that the tetradic version of Einstein’s equations, Eq. (18.29), is
actually more constraining than Eq. (18.13), this is not the case because the vielbein is not a fixed
external field, so we contracted with any possible vielbein.

(e) We have to vary the curvature with respect to the connection to obtain

�⌦ ab

µ⌫
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�!̃ b
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ab
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�!̃ b
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�!̃ ac

⌫]
, (18.32)

=D[µ�!̃
ab

⌫]
. (18.33)



Thus, varying the action, we obtain

�SP

�!̃ ab
⌫

= �2Dµ

⇣
eeµ

[a
e⌫
b]

⌘
= 0. (18.34)

(f) We can rewrite Eq. (18.14) as

Dµ(ee
µ

[a
e⌫
b]
) =

1

2
✏µ⌫⇢�✏abcdDµ(e

c

⇢
ed
�
) = 0, (18.35)

with the epsilon tensors ✏abcd and ✏µ⌫⇢�. As the epsilon tensors are invertible over antisymmetric tensor
spaces, they can be inverted to yield

D[µe
a

⌫]
= 0. (18.36)

We need the antisymmetrization here because in Eq. (18.35) we only consider the antisymmetric parts
of the covariant derivatives as indicated by the epsilon tensors. This implies that

Q[⇢µ]⌫ = D[⇢gµ]⌫ = 0. (18.37)

At the same time, the nonmetricity generically satisfies Q⇢µ⌫ = Q⇢(µ⌫) from the symmetry of the metric,
so it is totally symmetric

Q⇢µ⌫ = Q(⇢µ⌫). (18.38)

(g) At the quantum level, we care not only about the equations of motion, but also about the measure
of the path integral. This measure yields the configuration space, over which we integrate. In general,
when using different dynamical variables, this measure is different. Thus, two theories with equivalent
actions, but different dynamical variables are not necessarily equivalent. We’ll see more about this when
considering the Weyl anomaly next week.


